If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+36=22x
We move all terms to the left:
x^2+36-(22x)=0
a = 1; b = -22; c = +36;
Δ = b2-4ac
Δ = -222-4·1·36
Δ = 340
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{340}=\sqrt{4*85}=\sqrt{4}*\sqrt{85}=2\sqrt{85}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-22)-2\sqrt{85}}{2*1}=\frac{22-2\sqrt{85}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-22)+2\sqrt{85}}{2*1}=\frac{22+2\sqrt{85}}{2} $
| 5(-8-4k)=-8(2k-2) | | -9+7w=10w | | 5+7/1b=−2 | | 3.5x+7=6x-8 | | 11u-5u=30u | | 10-4(p+-1)=2(1-p) | | -(-4x-8)=-5(1-x) | | 6-4x=12-5x | | -2(2x+3)+4x=-2(6-3x)+3x | | 6g+12=2g=24 | | a/6-7=-5 | | 4/3x+2x=20 | | 3-2r=10+9(6-8r) | | -6(n+4)+8=6(1-n) | | -6(b+6)=-8(b+5) | | y+2(y-5)=2y=2 | | 3x-3(x+6)=6(1+4x) | | 8+x/8.96=15 | | 9.4-3y=31 | | 123=b-7 | | -2(b+2)-b=-7(b-8) | | 2(x-4)-4=9-5x | | -9.8=-2.3+v/3 | | 180=6a+3 | | 8(2)-2y=-2 | | 2x+8/10=x-2/3 | | 5x+9=81-12x/3 | | (3x–1)/(2x–2)=(3x–3)/(2x+2) | | 7+3m=18 | | 4b+3=−94 | | 6+2x+1=6x-9 | | 4(2)-3y=-19 |